Computing Modular Polynomials

ثبت نشده
چکیده

The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with an isogeny of degree ` between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms ([BSS99] Chapter VII).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quasi-linear time algorithm for computing modular polynomials in dimension 2

We propose to generalize the work of Régis Dupont for computing modular polynomials in dimension 2 to new invariants. We describe an algorithm to compute modular polynomials for invariants derived from theta constants and prove heuristically that this algorithm is quasi-linear in its output size. Some properties of the modular polynomials defined from quotients of theta constants are analyzed. ...

متن کامل

Computing modular polynomials in quasi-linear time

We analyse and compare the complexity of several algorithms for computing modular polynomials. We show that an algorithm relying on floating point evaluation of modular functions and on interpolation, which has received little attention in the literature, has a complexity that is essentially (up to logarithmic factors) linear in the size of the computed polynomials. In particular, it obtains th...

متن کامل

Computing Modular Polynomials

The l modular polynomial, φl(x, y), parameterizes pairs of elliptic curves with an isogeny of degree l between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms ([B...

متن کامل

Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as:     ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , )  euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004