Computing Modular Polynomials
ثبت نشده
چکیده
The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with an isogeny of degree ` between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms ([BSS99] Chapter VII).
منابع مشابه
A quasi-linear time algorithm for computing modular polynomials in dimension 2
We propose to generalize the work of Régis Dupont for computing modular polynomials in dimension 2 to new invariants. We describe an algorithm to compute modular polynomials for invariants derived from theta constants and prove heuristically that this algorithm is quasi-linear in its output size. Some properties of the modular polynomials defined from quotients of theta constants are analyzed. ...
متن کاملComputing modular polynomials in quasi-linear time
We analyse and compare the complexity of several algorithms for computing modular polynomials. We show that an algorithm relying on floating point evaluation of modular functions and on interpolation, which has received little attention in the literature, has a complexity that is essentially (up to logarithmic factors) linear in the size of the computed polynomials. In particular, it obtains th...
متن کاملComputing Modular Polynomials
The l modular polynomial, φl(x, y), parameterizes pairs of elliptic curves with an isogeny of degree l between them. Modular polynomials provide the defining equations for modular curves, and are useful in many different aspects of computational number theory and cryptography. For example, computations with modular polynomials have been used to speed elliptic curve point-counting algorithms ([B...
متن کاملComputing the First and Third Zagreb Polynomials of Cartesian Product of Graphs
Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as: ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , ) euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کامل